skip to main content


Search for: All records

Creators/Authors contains: "Miller-Jones, J. C. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    A tidal disruption event (TDE) occurs when a star is destroyed by a supermassive black hole. Broad-band radio spectral observations of TDEs trace the emission from any outflows or jets that are ejected from the vicinity of the supermassive black hole. However, radio detections of TDEs are rare, with <20 published to date, and only 11 with multi-epoch broad-band coverage. Here we present the radio detection of the TDE AT2020vwl and our subsequent radio monitoring campaign of the outflow that was produced, spanning 1.5 yr post-optical flare. We tracked the outflow evolution as it expanded between 1016 and 1017 cm from the supermassive black hole, deducing it was non-relativistic and launched quasi-simultaneously with the initial optical detection through modelling the evolving synchrotron spectra of the event. We deduce that the outflow is likely to have been launched by material ejected from stream-stream collisions (more likely), the unbound debris stream, or an accretion-induced wind or jet from the supermassive black hole (less likely). AT2020vwl joins a growing number of TDEs with well-characterized prompt radio emission, with future timely radio observations of TDEs required to fully understand the mechanism that produces this type of radio emission in TDEs.

     
    more » « less
  2. ABSTRACT

    Strongly magnetized (B ≥ 1012 G) accreting neutron stars (NSs) are prime targets for studying the launching of jets by objects with a solid surface; while classical jet-launching models predict that such NSs cannot launch jets, recent observations and models argue otherwise. Transient Be/X-ray binaries (BeXRBs) are critical laboratories for probing this poorly explored parameter space for jet formation. Here, we present the coordinated monitoring campaigns of three BeXRBs across four outbursts: giant outbursts of SAX 2103.5+4545, 1A 0535+262, and GRO J1008–57, as well as a Type-I outburst of the latter. We obtain radio detections of 1A 0535+262 during ten out of twenty observations, while the other targets remained undetected at typical limits of 20–50 $\mu$Jy. The radio luminosity of 1A 0535+262 positively correlates with its evolving X-ray luminosity, and inhabits a region of the LX–LR plane continuing the correlation observed previously for the BeXRB Swift J0243.6+6124. We measure a BeXRB LX–LR coupling index of β = 0.86 ± 0.06 ($L_R \propto L_X^\beta$), similar to the indices measured in NS and black hole low-mass X-ray binaries. Strikingly, the coupling’s LR normalization is ∼275 and ∼6.2 × 103 times lower than in those two comparison samples, respectively. We conclude that jet emission likely dominates during the main peak of giant outbursts, but is only detectable for close-by or super-Eddington systems at current radio sensitivities. We discuss these results in the broader context of X-ray binary radio studies, concluding that our results suggest how supergiant X-ray binaries may host a currently unidentified additional radio emission mechanism.

     
    more » « less
  3. ABSTRACT

    We use the Very Long Baseline Array to conduct high precision astrometry of a sample of 33 compact, flat spectrum, variable radio sources in the direction of the Galactic plane (Becker et al. 2010). Although Becker et al. (2010) ruled out a few potential scenarios for the origin of the radio emission, the study could not rule out that these sources were black hole X-ray binaries (BHXBs). Most known BHXBs are first detected by X-ray or optical emission when they go into an outburst, leaving the larger quiescent BHXB population undiscovered. In this paper, we attempt to identify any Galactic sources amongst the Becker et al. (2010) sample by measuring their proper motions as a first step to finding quiescent BHXB candidates. Amongst the 33 targets, we could measure the proper motion of six sources. We find that G32.7193-0.6477 is a Galactic source and are able to constrain the parallax of this source with a 3σ significance. We found three strong Galactic candidates, G32.5898-0.4468, G29.1075-0.1546, and G31.1494-0.1727, based purely on their proper motions, and suggest that G29.1075-0.1546 is also likely Galactic. We detected two resolved targets for multiple epochs (G30.1038+0.3984 and G29.7161-0.3178). We find six targets are only detected in one epoch and have an extended structure. We cross-match our VLBA detections with the currently available optical, infrared, and X-ray surveys, and did not find any potential matches. We did not detect 19 targets in any VLBA epochs and suggest that this could be due to limited uv-coverage, drastic radio variability, or faint, extended nature of the sources.

     
    more » « less
  4. Abstract

    We use very long baseline interferometry to measure the proper motions of three black hole X-ray binaries (BHXBs). Using these results together with data from the literature and Gaia DR2 to collate the best available constraints on proper motion, parallax, distance, and systemic radial velocity of 16 BHXBs, we determined their three-dimensional Galactocentric orbits. We extended this analysis to estimate the probability distribution for the potential kick velocity (PKV) a BHXB system could have received on formation. Constraining the kicks imparted to BHXBs provides insight into the birth mechanism of black holes (BHs). Kicks also have a significant effect on BH–BH merger rates, merger sites, and binary evolution, and can be responsible for spin–orbit misalignment in BH binary systems. 75 per cent of our systems have potential kicks $\gt 70\, \rm {km\,s^{-1}}$. This suggests that strong kicks and hence spin–orbit misalignment might be common among BHXBs, in agreement with the observed quasi-periodic X-ray variability in their power density spectra. We used a Bayesian hierarchical methodology to analyse the PKV distribution of the BHXB population, and suggest that a unimodal Gaussian model with a mean of 107 $\pm \,\,16\, \rm {km\,s^{-1}}$ is a statistically favourable fit. Such relatively high PKVs would also reduce the number of BHs likely to be retained in globular clusters. We found no significant correlation between the BH mass and PKV, suggesting a lack of correlation between BH mass and the BH birth mechanism. Our python code allows the estimation of the PKV for any system with sufficient observational constraints.

     
    more » « less